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LETTER TO THE EDITOR 

Travelling waves for a model non-linear reaction-diff usion 
system 

P Kaliappant, M Lakshmanan and P K Ponnuswamy 
Department of Physics, Autonomous Postgraduate Centre, University of Madras, 
Tiruchirapalli 620 020, Tamilnadu, India 

Received 29 April 1980 

Abstract. Explicit travelling wave solutions with specified wave speeds are worked out for a 
model biochemical reaction proposed by Prigogine. 

A biochemical trimolecular reaction model proposed by Prigogine (Nicolis and Prigo- 
gine 1977) aims to discover the types of qualitative behaviour compatible with 
fundamental laws such as the laws of thermodynamics and chemical kinetics. This 
model is described by a set of coupled non-linear partial differential equations contain- 
ing reaction and diffusion terms: 

aX/at = A - (B + l)X + X2 Y + DxV2X 

a Y/a t = BX - X 2  Y + DyV2 Y 
(1) 

(2) 

where V2 is the Laplace operator. Here A, B, X and Y denote concentrations, Dx and 
D y  are diffusion coefficients and the concentrations A and B of the reactants are 
variable parameters that can be controlled in the experiment. 

Recently Boa (1975) studied the above system for possible steady states in a 
one-dimensional geometry under the simplifying assumption that the component Y 
diffuses very rapidly, i.e. DY + 00, Dx C a. He then obtained a non-linear second- 
order boundary value problem and applied phase-plane techniques to determine 
finite-amplitude steady-state solutions. 

Our aim in this Letter is to consider this system in a one-dimensional unbounded 
media and to reduce the problem to one dynamical variable (X) only by assuming a 
large separation in the two diffusion constants involved and choosing suitable boundary 
conditions. On seeking a wave solution, then, we are able to reduce the system to one of 
Painleve type (i.e. solutions that admit only poles as movable singularities) for a special 
wave speed c. The general solution for this wave speed is found and from this we deduce 
a class of one-parameter solutions of a simple nature satisfying the boundary conditions 
of biological interest. 

We treat the problem in a one-dimensional unbounded media. Denoting the space 
variable as r, the operator V2 becomes d2/dr2. We make the assumption that Dy +CO, 
Dx C 00. This simplified assumption is used to reduce the problem to one dynamical 
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variable only (see Boa 1975, Ibanez and Velarde 1978, Lefever et a1 1977). The limit 
D y  + CO in equation (2) leaves the equation 

d2 Y / d r 2  = 0. (3) 
By choosing the boundary condition Y(co) = Y(-CO) = 1, equation (3) gives the 

solution 

Y = l .  ( 4 )  
Insertion of (4) into equation (1) yields 

Dx(a2X/ar2) - (aX/at) + X 2 -  ( B  + l)X + A  = 0. ( 5 )  
If we let 

r’ = (l/Dx)1’2r (6) 
t’ = It 

where 1 = [(B + 1)’ - 4A]”* and drop the primes, equation ( 5 )  reduces to 

(a2X/ar2) - (ax/at) +x2 -X = 0. 

X(r,  t )  = w(z) 

(7) 

If travelling wave solutions of equation (7) exist then X can be written in the form 

z = -ct 

where c is the speed of propagation of the wave. Then (7) reduces to an ordinary 
second-order nun-linear differential equation 

d2W/dz2 = -c(dw/dz) - w 2  + W. (8) 

Now we shall show that equation (8) can be reduced to one of Painleve type (Ince 
1956) for a special value of c. For this value of c, we obtain explicit solutions for w 
satisfying the boundary conditions W ( - C O )  = 0 and ~ ( c o )  = 1 which are of biological 
interest. 

There are 50 canonical types of ordinary differential equations whose solutions, as 
functions of a complex variable, have only poles as movable (i.e. dependent upon initial 
condition) singularities which are called Painleve type; these are enumerated by Ince 
(1956). It appears to be a basic property (Ablowitz and Segur 1977, Ablowitz et a1 
1978) that many of the solitons possessing non-linear partial differential equations can 
be reduced to ordinary differential equations of Painleve type. It therefore seems that 
equations with this Painleve property are somewhat simpler and are likely to be 
solvable explicitly. This is indeed verified for Fisher’s equations by Ablowitz and 
Zeppetella (1979). 

Make the following transformations: 

where 
3 2  1 <b = -5c-l exp (-;cz) A = -6 exp (- $cz) p = n c  +?& 
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Then, for c = 5/J6, equation (8) reduces to 

d2 W/dZ2 = 6 W2. (10) 

W = B ( Z - k ;  0, g3) (11) 

Now equation (10) is of Painleve type (Ince 1956); its solution is 

where B(x ; g2, g3) is the Weirstrauss B function with invariants g2 and g3 (Abramowitz 
and Stegun 1965). Here k and g3 are arbitrary constants. Hence the solution of (8) is 
given by 

w = - 6 e x p [ ( - 2 / ~ 6 ) ~ ] 8 ( - J 6 e x p ( - z / J 6 ) - k ;  0, g3)+1. (12) 
In general, this solution represents a doubly periodic function with an infinite 

number of poles on the real axis. But by choosing g3 = 0 and noting B ( x  ; 0,O) = x - ~ ,  we 
obtain the solution as 

-2 k 
w = 1 - ( 1 + - exp ( z /  J6)) . J6 

Thus we obtain a one-parameter family of solutions satisfying the boundary conditions 
w(-oo) = 0 and w(+oo) = 1. In order that the solutions may not blow up for any finite 
real z,  we should have k > 0. 
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